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Additional Information 

 

Full model definition 

 

The model may be expressed as a set of partial differential equations in time and age 

variables: 
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Here, ABR is the annual biting rate per host in the community; 
1ψ is the proportion of 

infective larvae leaving mosquitoes per bite; 2ψ is the proportion of these that enter the 

host; 2s is the proportion of these that develop into adult worms; )(ah is the age varying 

exposure to mosquito bites; µ is the death rate of adult worms; α is the production rate of 

microfilariae per worm;γ is the death rate of microfilariae;δ is the waning rate of the 

immunity variable;λ is the number of bites made per unit time by a mosquito;κ is the 

maximum uptake of a mosquito; g is the proportion of mosquitoes which pick up 

infection when biting an infected host; )(aπ is the age distribution of humans in the 

community;σ is the mosquito death rate; and *L is the infective larval number per 

mosquito calculated by the final equation. The model also includes a number of density 

dependences, whose functional forms are detailed in Additional Table 2: )(1 Ig is a 

function describing the host immune response to incoming larvae[1, 2] which acts to 

attenuate their establishment within the host; )(2 Wg describes the suppression of the 

immune response to parasite establishment[3, 4], which is thought to act when the 
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community vector infective rate is large; )(Wφ  is the worm mating probability; and 

)(Mf  is a mosquito function describing the conversion of mf to L3, referred to here as 

the uptake function. 

 

Details on the derivation of the effective reproduction number ( effR ) for the system of 

equations described above are given below, with the expression arrived at for this 

variable given by: 
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where the constant 221 s
H

V
ψψλ=Λ in which 

H

V
λ represents the observed ABR; and 1µ is 

the constant death rate of the human host population. The bars over many of the 

expressions included in the reproduction number denote the average values of these 

expressions over age in the host population.  The effective reproduction number 

approaches a value of one at equilibrium, by definition, and this feature of the above 

function can be exploited to calculate values of the worm breakpoint. As noted in the 

main text, where the function attains a value of 1, the system will be in equilibrium: the 

upper equilibrium will be the endemic state, and the lower (unstable) point will be the 

breakpoint (Additional Figure 1).  
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Model parameter values and density dependent functions 

 

Additional Table 1: Description and values of the parameters of the model 

 

Parameter 

symbol 

Definition Typical Values (range of 

prior distribution [lower,upper]) 

Model parameters 

λ Number of bites per mosquito [5,10] per month 

V/H Ratio of number of vectors to hosts Adjusted to ensure correct 

ABR (λV/H) 

1ψ  Proportion of L3 leaving mosquito per bite [0.12, 0.70] 

2ψ 2s  Proportion of L3 leaving mosquito that enter host* 

Proportion of L3 entering host that develop into 

adult worms (this product is referred to as the 

‘establishment rate’ in the main text) 

[0.00004, 0.004] 

µ  Death rate of adult worms [0.008, 0.018] per month 

α  Production rate of mf per worm [0.2, 1.5] per month 

γ  Death rate of mf [0.08, 0.12] per month 

g   Proportion of mosquitoes which pick up infection 

when biting an infected host 

[0.26, 0.48] 

σ  Death rate of mosquitoes [1.5, 8.5] per month 

δ Immunity waning rate   0 per month  

Model functions 

k(M) Aggregation parameter from negative binomial 

distribution; this consists of a constant, 
0k , and a 

linear component, link M, dependent upon the mf 

intensity M  

0k + link M: 

[0.0006, 0.0008]+[0, 

0.04]M 

h(a)  Parameter to adjust rate at which individuals of age 

a are bitten: linear rise from 0 at age zero to 1 at 

linH  years  

linH : [1, 20] years 



 4 

*L  Equilibrium value of the larval density (see 

Equation 5) 

Varying* 

)(aπ   Probability that an individual is of age a  Varying
*
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 These functions/parameters vary over the course of the simulation or over age 
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Additional Table 2: Density dependent functions and parameters included in the model 

 

  Density Dependence   Expression   Parameters  Typical Values (range of 

prior distribution [lower, 

upper])  

Larval establishment 

immunity )(1 Ig [1, 3]  

 
cI+1
1

  
c - strength of 

immunity to larval 

establishment 

[0.1, 0.00001] per worm 

month 

Host 

immunosuppression 

)(2 Wg [3, 5]  
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  CI - strength of 

immunosuppression; 

CS - slope of 

immunosuppression 

function  

CI : [0.5, 5] 

 

CS : [0.01, 0.19] 

Vector uptake 

)(MU [1]+  
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κκ 1  where 

1=a  for Culex and 

2=a  for Anopheles  

κ - maximum level of 

L3 given mf;  

r - gradient of uptake  

κ : [3.9, 4.9] (Culex) 

(larvae) 

[3.6, 4.8] (Anopheles) 

r : [0.17, 0.21] (Culex) 

(larvae/mf) 

[0.05, 0.06] (Anopheles) 

Adult worm mating 

probability 

))(,( MkWφ [6]  
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)(Mk - negative 

binomial aggregation 

parameter (=
0k +

link M) 

As in Additional Table 1 

  

   

 

 

 

 

 

                                                 
+
 This function differs from f(M) included in the larval equation in the main text. The function f(M) is 

obtained when U(M), the conversion of mf density into L3 larvae for a mosquito biting a single individual, 

is averaged over a population in which the mf are distributed unevenly. When the distribution is negative 

binomial, we obtain the functions detailed by Gambhir and Michael (Gambhir M, Michael E: Complex 

ecological dynamics and eradicability of the vector borne macroparasitic disease, lymphatic filariasis. 

PLoS ONE 2008, 3(8):e2874.)   
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Calculation of the basic and effective reproduction numbers 

 

0R  is, strictly speaking, equal to zero at the disease-free equilibrium for macroparasitic 

systems in which there are positive density dependences. We can, however, use the 

effective reproduction number expression to obtain a measure of the ‘raw’ reproduction 

number of these models, unhindered by positive density dependences (dds), following the 

arguments set out in Regoes et al.[7]. By either assuming a quasi-equilibrium state for 

fast-changing variables and by finding the largest eigenvalue of the next-generation 

matrix, we obtain an expression for effR (appropriately averaged over age): 
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The parameters are as detailed above, with an additional parameter introduced here for 

the average human death rate 1µ , set to 0.0015 per month (average lifespan of approx 60 

years). When we set each of the positive dds to 1 and examine each of the remaining dds 

at (W,M,L) = 0 we obtain an expression for 0R .  
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This function was used to calculate breakpoints and TBR values for this paper as follows. 

Specifically, breakpoints are obtained as those parasite levels at which the function first 

intersects the 1=effR  horizontal, while TBRs represent those critical ABR values that 

caused the function 
effR to cross the 1=effR  horizontal again at the first point only (see 

Additional Figure 1). 
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Additional Figure 1 The effective reproduction number. Schematic illustration of the 

behaviour of the effective reproduction number with increasing mf intensity for the case 

when a) the density dependences are of a limiting form only, and b) are positive and 

negative. Equilibria occur when Reff =1, which occurs twice for the facilitation case; the 

lower equilibrium being unstable and the upper one stable.  

 

 

Uncertainty estimation 

 

We applied a variation of the Bayesian Melding (BM) algorithm used previously to 

quantify the uncertainty associated with deterministic model predictions of, for example,  

oceanic whale population size and HIV prevalence [8].  The original algorithm deals with 

a deterministic model M that relates a set of input parameters and initial conditions θ, to a 

set of outputsφ , though it has been extended recently to take into account stochastic 

models[9]. Prior information, based on literature reviews and expert opinion, for both the 

model inputs and outputs ( )(θp and )(φp ) are then combined, along with any available 

data, in the form of likelihood functions for the input and output parameters ( )(θL and 

)(φL ). The algorithm we used to quantify uncertainty in the parameters of the present 

model and hence induced uncertainty in outcomes closely followed the method outlined 

by Brown et al.[10] : 

 

1) From the prior input parameter distributions, )(θp , select 100,000 sets of model 

input parameters. 

2) Run the model once for each of the selected parameter sets in order to generate a 

set of 100,000 model outputs (here microfilarial (mf) prevalence curves).  

Worm burden 

1 1 

Negative density dependence 
Positive and negative density 
dependences  

Worm burden 

effReffR
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3) Calculate the goodness of fit for each of the outputs by computing the likelihood 

for each ( )(θL ), given the prevalence data for each endemic area.  

4) Resample, with replacement, 500 times from the original set of 100,000 parameter 

sets, with the probability of drawing each resample proportional to its likelihood 

for the data calculated in (3).  

5) Run the model to calculate the desired quantities for each of the 500 parameter 

sets found in (4). These quantities are the TBR, breakpoints, R0 values, and, for 

the full selection of 500 parameter sets, extinction probabilities. As pointed out by 

Brown et al. [10], it is unlikely that the 500 resampled parameter sets will be 

unique, since those with the highest likelihood will be picked multiple times in the 

resampling procedure of (4).  
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Additional Table 3 Results of the univariate Kolmogorov-Smirnoff (KS) test of 

differences between the prior and posterior parameter distributions of passing model fits 

to age-mf prevalence data from each study community.  

 
Village 
name 

Parameter 
number 

Parameter 
symbol 

Median  KS-test p-
Value 

Peneng 1 β 10.23886 0.059815 

 2 α 0.862249 0.73716 

 3 k0 0.000244 0.12207 

 4 klin 0.010728 0.036601 

 5 k1 4.419066 0.603374 

 6 r1 0.190052 0.747361 

 7 σ1 5.308408 0.081517 

 8 ψ1 0.40052 0.040564 

 9 ψ2s2 0.001178 0 

 10 µ 0.012876 0.431694 

 11 γ 0.099062 0.202967 

 12 b1 0.368594 0.585877 

 13 c 0.000804 0 

 14 Hlin 12.61948 0 

 15 V/H 66.69062 0.059815 

 16 k2 4.335802 0.000181 

 17 r2 0.132566 0.139618 

 19 IC 1.292916 0 

 20 SC 0.082082 0.000028 

Albulum 1 β 9.805646 0.175748 

 2 α 0.619113 0 

 3 k0 0.000299 0.757118 

 4 klin 0.014086 0 

 5 k1 4.409542 0.686352 

 6 r1 0.1907 0.120279 

 7 σ1 5.014891 0.56961 

 8 ψ1 0.403915 0.086807 

 9 ψ2s2 0.001608 0.009886 

 10 µ 0.013651 0.002123 

 11 γ 0.103445 0.000003 

 12 b1 0.37741 0.372124 

 13 c 0.0079 0 

 14 Hlin 12.93503 0 

 15 V/H 359.7261 0.175748 

 16 k2 4.353135 0.171139 

 17 r2 0.133012 0.223401 

 19 IC 1.811502 0 

 20 SC 0.095683 0.072914 

Yauatong 1 β 10.17119 0.000598 

 2 α 0.646652 0 

 3 k0 0.000503 0.085938 

 4 klin 0.016922 0 

 5 k1 4.440266 0.067958 

 6 r1 0.188243 0.02397 

 7 σ1 4.797716 0.074348 

 8 ψ1 0.433837 0.158675 
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 9 ψ2s2 0.002185 0 

 10 µ 0.014643 0 

 11 γ 0.104173 0.000001 

 12 b1 0.383737 0.001774 

 13 c 0.008148 0 

 14 Hlin 13.82248 0 

 15 V/H 303.5697 0.000598 

 16 k2 4.393252 0.151337 

 17 r2 0.158881 0 

 19 IC 1.002648 0 

 20 SC 0.091728 0.002469 

Nanaha 1 β 9.554677 0.000015 

 2 α 0.832377 0.000002 

 3 k0 0.000296 0.000001 

 4 klin 0.00227 0 

 5 k1 4.363255 0 

 6 r1 0.191383 0 

 7 σ1 5.057821 0 

 8 ψ1 0.341978 0 

 9 ψ2s2 0.001523 0 

 10 µ 0.013405 0 

 11 γ 0.109128 0 

 12 b1 0.345178 0 

 13 c 0.000006 0 

 14 Hlin 2.803097 0 

 15 V/H 101.268 0.000015 

 16 k2 4.428853 0.000001 

 17 r2 0.179219 0 

 19 IC 0.8119 0 

 20 SC 0.133671 0 

Ngahmbule 1 β 10.50728 0 

 2 α 0.807199 0 

 3 k0 0.000705 0 

 4 klin 0.006979 0 

 5 k1 4.527248 0 

 6 r1 0.187917 0.0003 

 7 σ1 4.497186 0.000434 

 8 ψ1 0.502186 0 

 9 ψ2s2 0.002028 0 

 10 µ 0.013673 0 

 11 γ 0.10299 0 

 12 b1 0.37074 0.000001 

 13 c 0.000005 0 

 14 Hlin 18.00879 0 

 15 V/H 34.46816 0 

 16 k2 4.285744 0 

 17 r2 0.155115 0 

 19 IC 0.794105 0 

 20 SC 0.095831 0.00091 

Kingwede 1 β 10.30483 0.00472 

 2 α 1.128977 0 

 3 k0 0.001004 0.480282 
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 4 klin 0.0029 0 

 5 k1 4.440532 0.365608 

 6 r1 0.193748 0.024161 

 7 σ1 4.304855 0 

 8 ψ1 0.47122 0.000011 

 9 ψ2s2 0.002554 0 

 10 µ 0.010532 0 

 11 γ 0.097173 0.000089 

 12 b1 0.375147 0.058484 

 13 c 0.004671 0 

 14 Hlin 17.00474 0 

 15 V/H 12.5184 0.00472 

 16 k2 4.406686 0.683354 

 17 r2 0.139435 0.44648 

 19 IC 2.75616 0.012766 

 20 SC 0.093395 0.179401 

Tawalani 1 β 10.42004 0.000492 

 2 α 1.156932 0 

 3 k0 0.001394 0.004968 

 4 klin 0.029403 0 

 5 k1 4.365474 0.385678 

 6 r1 0.187469 0.225904 

 7 σ1 4.738848 0.000819 

 8 ψ1 0.467272 0 

 9 ψ2s2 0.000273 0 

 10 µ 0.010243 0 

 11 γ 0.095693 0 

 12 b1 0.375908 0.000287 

 13 c 0.004178 0 

 14 Hlin 17.4565 0 

 15 V/H 102.7672 0.000492 

 16 k2 4.3558 0.001645 

 17 r2 0.170567 0 

 19 IC 2.17801 0 

 20 SC 0.089627 0.025777 

Masaika 1 β 10.63932 0 

 2 α 1.135254 0 

 3 k0 0.002672 0.038829 

 4 klin 0.000647 0 

 5 k1 4.486561 0.046068 

 6 r1 0.188244 0.005195 

 7 σ1 4.641062 0.000226 

 8 ψ1 0.452232 0.000001 

 9 ψ2s2 0.002539 0 

 10 µ 0.011014 0 

 11 γ 0.095205 0 

 12 b1 0.392903 0 

 13 c 0.000005 0.034267 

 14 Hlin 14.4254 0 

 15 V/H 48.4367 0 

 16 k2 4.320197 0.000734 

 17 r2 0.14932 0.000002 
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 19 IC 1.022451 0 

 20 SC 0.104514 0.532806 

Pondicherry 1 β 10.95143 0 

 2 α 0.782494 0 

 3 k0 0.000393 0 

 4 klin 0.016338 0 

 5 k1 4.502677 0 

 6 r1 0.198093 0 

 7 σ1 4.851834 0 

 8 ψ1 0.537531 0 

 9 ψ2s2 0.00019 0 

 10 µ 0.009273 0 

 11 γ 0.099532 0 

 12 b1 0.370619 0 

 13 c 0.097105 0 

 14 Hlin 8.843914 0 

 15 V/H 525.9599 0 

 16 k2 4.581539 0 

 17 r2 0.081631 0 

 19 IC 2.549937 0 

 20 SC 0.126419 0 
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